205 research outputs found

    Paired cut-wire arrays for enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen

    Full text link
    It has recently been shown that the transmission of electromagnetic fields through sub-wavelength slits (parallel to the electric field direction) in a thin metallic screen can be greatly enhanced by covering one side of the screen with a metallic cut-wire array laid on a dielectric layer. In this Letter, we show that a richer phenomenology (which involves both electric- and magnetic-type resonances) can be attained by pairing a second cut-wire array at the other side of the screen. Via a full-wave comprehensive parametric study, we illustrate the underlying mechanisms and explore the additional degrees of freedom endowed, as well as their possible implications in the engineering of enhanced transmission phenomena.Comment: 4 pages, 8 figures; slight corrections in Figs. 1, 2, and

    Pyramidal metamaterial absorber for mode damping in microwave resonant structures

    Get PDF
    In many resonant structures the damping of parasitic or higher order modes is indispensable to guarantee a correct and stable performance. This is particularly true in the microwave region in case of cavities or other resonant systems operating in accelerating structures, where the mitigation of spurious resonance effects is mandatory to achieve high quality particle beams. We present the results on the mode suppression in a real pillbox cavity by inserting a properly designed pyramidal metamaterial that acts as light, small volume damper for specific resonances in the range 3-4 GHz, only slightly perturbing other intrinsic modes. Measurements of the cavity response without and with the metamaterial absorber are presented and compared with full wave simulations. Field distribution for the pillbox intrinsic modes under scrutiny is also presented, showing that damping induced by the metamaterial critically depends on its relative position inside the cavity

    THz Measurement Systems

    Get PDF
    The terahertz (THz) frequency region is often defined as the last unexplored area of the electromagnetic spectrum. Over the past few years, the full access has been the objective of intense research efforts. Progress in this area has played an important role in opening up the possibility of using THz electromagnetic radiation (T-waves) in science and in real-world applications. T-waves are not perceptible by the human eye, are not ionizing, and have the ability to cross many non-conducting materials such as paper, fabrics, wood, plastic, and organic tissues. Moreover, the use of THz radiation allows non-destructive analysis of the materials under investigation both by study of their “fingerprint” via spectroscopic measurements and by high-resolution spatial imaging operations, exploiting the see-through capability of T-waves. Such technology can be applied in diverse areas, spanning from biology to chemical, pharmaceutical, environmental sciences, etc. In this chapter, we will present the typical architecture of measurement systems based on the THz technology, detailing what are the parameters that define their performance, the measurement methods, and the related errors and uncertainty, and focusing at the end on the use of time-domain spectroscopy for the evaluation of different material properties in this specific frequency region

    Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy

    Get PDF
    We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy

    THz spectroscopy on graphene-like materials for bio-compatible devices

    Get PDF
    Graphene-like (GL) layers and eumelanin-based graphene-like (EUGL) hybrids have been investigated through THz time domain spectroscopy. The interest in these materials lies on their peculiar chemical-physical properties: the former are conductive water stable materials, whereas the latter are biocompatible materials with good conductive and adhesive properties. Both exhibit promising optoelectronic and bioelectronic applications. We measured mixtures of GL layers or EUGL hybrids with KBr, shaped in pellets with uniform thickness, in order to circumvent problems related to sample inhomogeneity and roughness. A mean field theory was applied to extract direct information on permittivity and conductivity. Data have been carefully fitted through the Drude-Smith theory, confirming the conductive nature of the hybrid materials. The results show that EUGL hybrid-based devices can be promising for the next generation of printable bio-circuits

    Superlensing properties of one-dimensional dielectric photonic crystals

    Full text link
    We present the experimental observation of the superlensing effect in a slab of a one-dimensional photonic crystal made of tilted dielectric elements. We show that this flat lens can achieve subwavelength resolution in different frequency bands. We also demonstrate that the introduction of a proper corrugation on the lens surface can dramatically improve both the transmission and the resolution of the imaged signal.Comment: 9 pages, 9 figure

    Bandgap properties of low index contrast aperiodically ordered photonic quasicrystals

    Full text link
    We numerically analyze, using Finite Difference Time Domain simulations, the bandgap properties of photonic quasicrystals with a low index contrast. We compared 8-, 10- and 12-fold symmetry aperiodically ordered lattices with different spatial tiling. Our results show that tiling design, more than symmetry, determines the transmission properties of these structures.Comment: 8 pages, 4 figures. To be published in Microwave and Optical Technologies Letter

    Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

    Get PDF
    We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering

    THz characterization of a metamaterial-based Spatial Light Modulator

    Get PDF
    The aim of this work is to investigate new classes of artificial materials exhibiting unconventional properties in order to build novel devices operating in the Terahertz regime. We focus on the design, fabrication and characterization of tunable metamaterials with unit cells based on Split Ring Resonators. By incorporation of a nematic liquid crystal in the structure, we observe a frequency shift in the resonant response over 10% in bandwidth and more than 10 dB change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator
    • …
    corecore